Menu

Show posts

This section allows you to view all posts made by this member. Note that you can only see posts made in areas you currently have access to.

Show posts Menu

Messages - cloudytechi147

#1
I wrote this model:

def create_network():
  model = Sequential()
  model.add(Input(shape=(150,150,3)))

  model.add(Conv2D(32, kernel_size=3,strides=(1, 1),activation='relu',kernel_initializer="glorot_uniform", padding='valid', dilation_rate=1))
  model.add(MaxPooling2D(pool_size=(2, 2)))
  model.add(Dropout(0.5))

  model.add(Conv2D(64, kernel_size=3, strides=(1, 1), activation='relu',kernel_initializer="glorot_uniform", padding='valid', dilation_rate=1))
  model.add(MaxPooling2D(pool_size=(2, 2)))
  model.add(Dropout(0.5))

  model.add(Conv2D(128, kernel_size=3, strides=(1, 1), activation='relu',kernel_initializer="glorot_uniform",  padding='valid', dilation_rate=1))
  model.add(MaxPooling2D(pool_size=(2, 2)))
  model.add(Dropout(0.5))

  model.add(Conv2D(128, kernel_size=3, strides=(1, 1), activation='relu',kernel_initializer="glorot_uniform",padding='valid', dilation_rate=1))
  model.add(MaxPooling2D(pool_size=(2, 2)))
  model.add(Dropout(0.5))

  model.add(Flatten())
  model.add(Dense(512, activation='relu'))
  model.add(Dropout(0.5))

  model.add(Dense(1, activation='sigmoid'))
  model.compile(optimizer = 'adam',
                   loss = 'binary_crossentropy',
                   metrics = ['accuracy'])
  return model

create_network()


And I fit it to some data:

def fit_model(train_generator=train_generator, validation_generator=validation_generator,network=create_network()):
  checkpoint_path = "/content/drive/model_checkpoint.h5"
  checkpoint_dir = os.path.dirname(checkpoint_path)

  callbacks_list = [
      callbacks.EarlyStopping(
          monitor = 'accuracy',
          patience = 2,
      ),

      callbacks.ModelCheckpoint(
          filepath=checkpoint_path,
          monitor = 'val_loss',
          #save_weights_only=True,
          save_best_only=True,
      ),
  ]



  model = network
  history = model.fit(train_generator,
                      epochs=1000,
                      validation_data=validation_generator,
                      callbacks = callbacks_list,
                      verbose=1
                      )
  score = model.evaluate(validation_generator)
  return history,model

history,model = fit_model(train_generator,validation_generator)


I can read in the model from the Network Monitoring tools:

model = load_model('/content/drive/model_checkpoint.h5')


For an image, I want to visualise every channel in every intermediate activation for the model.

I can read in the image:

from keras.preprocessing import image
file_list = ['/content/drive/image.JPEG']
file_list = file_list[0]


test_image = image.load_img(file_list,target_size=(150,150))
images = image.img_to_array(test_image)
images /= 255.0
images = np.expand_dims(images, axis=0)


To visualise the activations, I wrote:

layer_outputs = [layer.output for layer in model.layers[:]]
activation_model = tf.keras.Model(inputs=model.input, outputs=layer_outputs)
activations = activation_model.predict(images)


for i in range(len(layer_outputs)):
  first_layer_activation = activations[i]
  print(first_layer_activation.shape)
  plt.matshow(first_layer_activation[0, :, :, 1], cmap='viridis')


The output prints:

(1, 148, 148, 32)
(1, 74, 74, 32)
(1, 74, 74, 32)
(1, 72, 72, 64)
(1, 36, 36, 64)
(1, 36, 36, 64)
(1, 34, 34, 128)
(1, 17, 17, 128)
(1, 17, 17, 128)
(1, 15, 15, 128)
(1, 7, 7, 128)
(1, 7, 7, 128)
(1, 6272)


And then an error that says:

      2   first_layer_activation = activations[i]
      3   print(first_layer_activation.shape)
----> 4   plt.matshow(first_layer_activation[0, :, :, 1], cmap='viridis')

IndexError: too many indices for array: array is 2-dimensional, but 4 were indexed


Followed by some images.

Could someone explain what that error is saying and/or how to fix it? I'm not understanding how I get an error, but then it prints some intermediate activations images, so then I'm not sure I've done this properly?